托福阅读资料(一):Electricity from Wind

2011-11-03 15:24:01
以下小编带来了新托福阅读中的模拟试题,希望大家每一题都认真仔细的完成,在备考中好好准备,每天做新托福阅读熟悉考试的感觉,到考场上随机应变。相信大家在每天不断的练习中,一定会有不小的进步,那么现在就开始吧!

  Since 1980, the use of wind to produce electricity has been growing rapidly. In 1994 there were nearly 20,000 wind turbines worldwide, most grouped in clusters called wind farms that collectively produced 3,000 megawatts of electricity. Most were in Denmark (which got 3 percent of its electricity from wind turbines) and California (where 17,000 machines produced 1 percent of the state’s electricity, enough to meet the residential needs of a city as large as San Francisco). In principle, all the power needs of the United States could be provided by exploiting the wind potential of just three states—North Dakota, South Dakota, and Texas.

  Large wind farms can be built in six months to a year and then easily expanded as needed. With a moderate to fairly high net energy yield, these systems emit no heat-trapping carbon dioxide or other air pollutants and need no water for cooling; manufacturing them produces little water pollution. The land under wind turbines can be used for grazing cattle and other purposes, and leasing land for wind turbines can provide extra income for farmers and ranchers.

  Wind power has a significant cost advantage over nuclear power and has become competitive with coal-fired power plants in many places. With new technological advances and mass production, projected cost declines should make wind power one of the world’s cheapest ways to produce electricity. In the long run, electricity from large wind farms in remote areas might be used to make hydrogen gas from water during periods when there is less than peak demand for electricity. The hydrogen gas could then be fed into a storage system and used to generate electricity when additional or backup power is needed.

  Wind power is most economical in areas with steady winds. In areas where the wind dies down, backup electricity from a utility company or from an energy storage system becomes necessary. Backup power could also be provided by linking wind farms with a solar cell, with conventional or pumped-storage hydropower, or with efficient natural-gas-burning turbines. Some drawbacks to wind farms include visual pollution and noise, although these can be overcome by improving their design and locating them in isolated areas.

  Large wind farms might also interfere with the flight patterns of migratory birds in certain areas, and they have killed large birds of prey (especially hawks, falcons, and eagles) that prefer to hunt along the same ridge lines that are ideal for wind turbines. The killing of birds of prey by wind turbines has pitted environmentalists who champion wildlife protection against environmentalists who promote renewable wind energy. Researchers are evaluating how serious this problem is and hope to find ways to eliminate or sharply reduce this problem. Some analysts also contend that the number of birds killed by wind turbines is dwarfed by birds killed by other human-related sources and by the potential loss of entire bird species from possible global warming. Recorded deaths of birds of prey and other birds in wind farms in the United States currently amount to no more than 300 per year. By contrast, in the United States an estimated 97 million birds are killed each year when they collide with buildings made of plate glass, 57 million are killed on highways each year; at least 3.8 million die annually from pollution and poisoning; and millions of birds are electrocuted each year by transmission and distribution lines carrying power produced by nuclear and coal power plants.

  The technology is in place for a major expansion of wind power worldwide. Wind power is a virtually unlimited source of energy at favorable sites, and even excluding environmentally sensitive areas, the global potential of wind power is much higher than the current world electricity use. In theory, Argentina, Canada, Chile, China, Russia, and the United Kingdom could use wind to meet all of their energy needs. Wind power experts project that by the middle of the twenty-first century wind power could supply more than 10 percent of the world’s electricity and 10-25 percent of the electricity used in the United States.

  以上就是小编带来的新托福阅读的模拟,大家都做完了吗,每天练习3.4个阅读,最好把生词给记下来,每天把之前的生词都熟悉一下,这种不断地加深印象,到了考试的时候不管是在阅读中或者是写作中都会起到很好的效果。

分享

热门关注

托福考试阅读部分怎么备考

阅读考试备考技巧

托福阅读考试做题原则有哪些

托福阅读考试真题

托福口语考试的备考方法有什么

托福口语考试

托福考试阅读的主要题型与解题思路

托福考试阅读

托福考试怎么提升阅读的能力

托福阅读考试真题

托福阅读时间分配 备考托福阅读方法

托福阅读时间安排

托福阅读题型分析 如何提高托福阅读分数

托福阅读考试

托福阅读怎么算分 怎么训练托福阅读

托福阅读分数

托福阅读技巧总结 如何提高托福阅读分数

托福阅读技巧

托福阅读题型分类解析 备考托福阅读方法

托福阅读考试

热门问答